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Abstract

This paper investigates the existence of positive solutions for a sixth-order differential
equations. By using the Leggett-Williams fixed point theorem we give some new exis-
tence results.

Keywords: positive solutions, fixed point theorem

1 Introduction

Boundary-value problems for ordinary differential
equations arise in different areas of applied mathemat-
ics and physics and the existence and multiplicity of
positive solutions for such problems has become an
important area of investigation in recent years; we re-
fer the reader to [1-15] and the references therein. For
example, the deformations of an elastic beam in the
equilibrium state can be described as a boundary value
problem of some fourth-order differential equations.

Recently, boundary value problems for fourth-order
ordinary differential equations have been extensively
studied. It is well known that the deformation of the
equilibrium state, an elastic beam with its two ends
simply supported, can be described by the fourth-order
boundary value problem:

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0. (1)

Existence of solutions for problem (1) was established
for example by Gupta [1,2], Liu [3], Ma [4], Ma et.
al. [5], Ma and Wang [6], Aftabizadeh [7], Yang [8],
Del Pino and Manasevich [9] (see also the references
therein). All of those results are based on the Leray-
Schauder continuation method, topological degree and
the method of lower and upper solutions.

In 2003, Li [10] studied the existence of positive so-
lutions for the two-point boundary value problem with

two constant parameters

u(4)(t) + βu′′(t)− αu(t) = f(t, u(t)), 0 < t < 1

u(0) = u(1) = u′′(0) = u′′(1) = 0 (2)

under the conditions
(i) f(t, u) : [0, 1]×[0,∞) → [0,∞) is continuous;
(ii) α, β ∈ R and β < 2π2, α ≥ −β2

4 ,
α
π4 +

β
π2 < 1.

Recently, Yang [11] investigates the following
boundary value problem

u(4)(t) = g (t) f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u(3)(1) = 0.

It is well known that the deformation of the equilib-
rium state, an elastic circular ring segment with its two
ends simply supported can be described by a boundary
value problem for a sixth-order ordinary differential
equation [12]:

u(6) + 2u(4) + u′′ = f(t, u), 0 < t < 1

u(0) = u(1) = u′′(0) = u′′(1)

= u(4)(0) = u(4)(1) = 0,

However, there are only a handful of articles on this
topic. There is a classical definition for the Green
function of ordinary linear differential equations with
homogenous boundary conditions. The concept has
been generalized for a class of degenerate systems of
linear differential equations by Szeidl in [12].
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In this paper we shall discuss the existence of posi-
tive solutions for the elastic curved beam equation

−u(6)+au(4)+bu′′+cu = f(t, u, u′, u′′), 0 < t < 1

u(0) = u′′(0) = u(4)(0) = 0,

u′(1) = u(3)(1) = u(5)(1) = 0, (3)

where u (t) is the tangential displacement of the
center line of the circulat arch and a, b, c ∈ R. The
first boundary condition u(0) = u′′(0) = u(4)(0) = 0
means that the left end of the curved beam is supported
by sliding clamps. The boundary condition u′(1) =
u(3)(1) = u(5)(1) = 0 means that the right end of
the curved beam is simply supported. Our results will
generalize those established in [10,11]. For this, we
shall assume the following conditions throughout:

(H1) f(t, u) : [0, 1]× [0,∞)× [0,∞)×(−∞, 0] →
[0,∞) is continuous.

(H2)
(
π
2

)6
+ a

(
π
2

)4 − b
(
π
2

)2
+ c > 0, where

a, b, c ∈ R, a = λ1 + λ2 + λ3 > −
(
π
2

)2
, b =

−λ1λ2 − λ2λ3 − λ1λ3 > 0, c = λ1λ2λ3 < 0 and
λ1 ≥ 0 ≥ λ2 > −

(
π
2

)2
, 0 ≤ λ3 < −λ2.

Assumption (H2) involves a three-parameter non-
resonance condition.

2 Preliminaries

Let Y = C[0, 1] and Y+ =
{
u ∈ Y : u(t) ≥ 0,

t ∈ [0, 1]
}
. It is well known that Y is a Banach space

equipped with the norm ∥u∥0 = supt∈[0,1] |u(t)| . Let
E = C2[0, 1]. We need the space E equipped with the
norm

∥u∥2 = max {∥u∥0 , ∥u
′∥0 , ∥u

′′∥0} .

It is easy to show that E is complete with the norm
∥u∥2 . Let K be a cone in the real Banach space E.

Let γ, φ be nonnegative continuous convex func-
tionals on K, α be a nonnegative continuous concave
functional on K, and ψ be a nonnegative continuous
functional on K. For positive real numbers a, b, c and
d, we define the following convex sets

K(γ, d) = {u ∈ K : γ(u) < d};
K(γ, α, b, d) = {u ∈ K : b ≤ α(u), γ(u) ≤ d};

K(γ, φ, α, b, c, d) = {u ∈ K : b ≤ α(u), φ(u)

≤ c, γ(u) ≤ d};

and a closed set

L (γ, ψ, a, d) = {u ∈ K : a ≤ ψ (u) , γ (u) ≤ d} .

Theorem 1. (Leggett-Williams Fixed Point Theorem).
Let K be a cone in a real Banach space E. Let γ, φ
be nonnegative continuous convex functionals on K,
α be a nonnegative continuous concave functional on
K, and ψ be a nonnegative continuous functional on

K satisfying ψ (λu) ≤ λψ (u) for 0 ≤ λ ≤ 1, such
that for some positive numbers M and d,

α (u) ≤ ψ (u) and ∥u∥ ≤Mγ (u)

for all u ∈ K (γ, d). Suppose A : K (γ, d) →
K (γ, d) is a completely continuous operator and ex-
ists a, b, c with a < b such that

(A1) {u ∈ K (γ, φ, α, b, c, d) : α (u) > b} ̸= ∅
and α (Au) > b for u ∈ K (γ, φ, α, b, c, d) ;

(A2) α (Au) > b for u ∈ K (γ, α, b, d) with
φ (Au) > c;

(A3) 0 /∈ L (γ, ψ, a, d) and ψ (Au) < a for u ∈
L (γ, ψ, a, d) with ψ (u) = a.

Then A has at least three fixed points u1, u2, u3
in K (γ, d) satisfying γ (ui) ≤ d for i = 1, 2, 3,
α (u1) > b, a < ψ (u2) , α (u2) < b and ψ (u3) < a.

For h ∈ Y, consider the following linear boundary
value problem:

−u(6) + au(4) + bu′′ + cu = h(t), 0 < t < 1

u(0) = u′(1) = u′′(0) = u(3)(1)

= u(4)(0) = u(5)(1) = 0,
(4)

where a, b, c satisfy the assumption(π
2

)6
+ a

(π
2

)4
− b

(π
2

)2
+ c > 0 (5)

and let Γ =
(
π
2

)6
+ a

(
π
2

)4 − b
(
π
2

)2
+ c. The in-

equality (5) follows immediately from the fact that Γ
is the first eigenvalue of the problem −u(6) + au(4) +
bu′′ + cu = λu, u(0) = u′(1) = u′′(0) = u(3)(1) =
u(4)(0) = u(5)(1) = 0 and ϕ1(t) = sin π

2 t is the
first eigenfunction, i.e. Γ > 0. Because the set
l1 =

{
(a, b, c) :

(
π
2

)6
+ a

(
π
2

)4 − b
(
π
2

)2
+ c = 0

}
is the first eigenvalue set of the three-parameter bound-
ary value problem −u(6) + au(4) + bu′′ + cu = 0,
u(0) = u′(1) = u′′(0) = u(3)(1) = u(4)(0) =
u(5)(1) = 0, if (a, b, c) lies in l1, then by the Fredholm
alternative the existence of a solution of the boundary
value problem (4) cannot be guaranteed.

Let P (λ) = λ2 + βλ−α where β < 2
(
π
2

)2
, α ≥

0. It is easy to see that equation P (λ) = 0 has two real

roots λ1, λ2 =
−β±

√
β2+4α

2 , with λ1 ≥ 0 ≥ λ2 >

−
(
π
2

)2
. Let λ3 be a number such that 0 ≤ λ3 < −λ2.

In this case, (4) satisfies the following decomposition
form:

− u(6) + au(4) + bu′′ + cu

= (− d2

dt2
+ λ1)(−

d2

dt2
+ λ2)(−

d2

dt2
+ λ3)u,

0 < t < 1.

(6)

It is obvious that a = λ1 + λ2 + λ3 > −
(
π
2

)2
, b =

−λ1λ2 −λ2λ3 −λ1λ3 > 0, c = λ1λ2λ3 < 0. Indeed,
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if we substitute a, b, c for (5), we obtain(π
2

)6
+ (λ1 + λ2 + λ3)

(π
2

)4
+ (λ1λ2 + λ2λ3 + λ1λ3)

(π
2

)2
+ λ1λ2λ3 > 0,

(7)

hence

− λ2(
(π
2

)4
+ (λ1 + λ3)

(π
2

)2
+ λ1λ3)

<
(π
2

)6
+ (λ1 + λ3)

(π
2

)4
+ λ1λ3

(π
2

)2
from the assumptions λ1 + λ3 > 0, λ1λ3 > 0, and
we obtain

(
π
2

)4
+ (λ1 + λ3)

(
π
2

)2
+ λ1λ3 > 0, so

λ2 > −
(
π
2

)2
. So, 0 ≥ λ2 > −

(
π
2

)2
is applicable.

Similarly, from (7), we have

− λ1(
(π
2

)4
+ (λ2 + λ3)

(π
2

)2
+ λ2λ3)

<
(π
2

)6
+ (λ2 + λ3)

(π
2

)4
+ λ2λ3

(π
2

)2
from the assumptions 0 ≤ λ3 < −λ2,−

(
π
2

)2
< λ2 <

0, and we obtain
(
π
2

)4
+ (λ2 + λ3)

(
π
2

)2
+ λ2λ3 >

0, so λ1 > −
(
π
2

)2
, i.e. the assumption λ1 ≥ 0 is

applicable. From (7), we have

− λ3(
(π
2

)4
+ (λ1 + λ2)

(π
2

)2
+ λ1λ2)

<
(π
2

)6
+ (λ1 + λ2)

(π
2

)4
+ λ1λ2

(π
2

)2
,

in which
(
π
2

)4
+ (λ1 + λ2)

(
π
2

)2
+ λ1λ2 =

(
π
2

)4
+

λ1(
(
π
2

)2
+ λ2) + λ2

(
π
2

)2
> 0 because

(
π
2

)4
+

λ2
(
π
2

)2
> 0 and λ1(

(
π
2

)2
+ λ2) > 0. So λ3 >

−
(
π
2

)2
, i.e. the assumption 0 ≤ λ3 < −λ2 is ap-

plicable.
Suppose that Gi(t, s)(i = 1, 2, 3) is the Green

function associated with

−u′′ + λiu = 0, u(0) = u′(1) = 0. (8)

We need the following lemmas.

Lemma 1. Let ωi =
√
|λi|, thenGi(t, s)(i = 1, 2, 3)

can be expressed as
(i) when λi > 0,

Gi(t, s) =


sinhωit coshωi(s− 1)

ωi coshωi
, 0 ≤ t ≤ s ≤ 1

coshωi(t− 1) sinhωis

ωi coshωi
, 0 ≤ s ≤ t ≤ 1

(ii) when λi = 0,

Gi(t, s) =

{
t, 0 ≤ t ≤ s ≤ 1
s, 0 ≤ s ≤ t ≤ 1

(iii) when −
(
π
2

)2
< λi < 0,

Gi(t, s) =


sinωit cosωi(1− s)

ωi cosωi
, 0 ≤ t ≤ s ≤ 1

sinωis cosωi(1− t)

ωi cosωi
, 0 ≤ s ≤ t ≤ 1

.

It is easy to obtain for ∂Gi(t,s)
∂t that

(i) when λi > 0, ∂Gi(t,s)
∂t

=


coshωit coshωi(s− 1)

coshωi
s, 0 ≤ t ≤ s ≤ 1

sinhωi(t− 1) sinhωis

coshωi
s, 0 ≤ s ≤ t ≤ 1

(ii) when λi = 0, ∂Gi(t,s)
∂t

=

{
1, 0 ≤ t ≤ s ≤ 1
0, 0 ≤ s ≤ t ≤ 1

(iii) when −
(
π
2

)2
< λi < 0, ∂Gi(t,s)

∂t

=


cosωit cosωi(1− s)

cosωi
, 0 ≤ t ≤ s ≤ 1

sinωis sinωi(1− t)

cosωi
, 0 ≤ s ≤ t ≤ 1

.

It is easy to see that Gi(t, s)(i = 1, 2, 3) has the
following properties:

(i) Gi(t, s) > 0, ∀t, s ∈ (0, 1) ;

(ii) ∂Gi(t,s)
∂t > 0, ∀t, s ∈ (0, 1) .

Let

M1 =

∫ 1

0

∫ 1

0

∫ 1

0

G1(1, v)G2(v, s)G3(s, τ)g (τ) dτdsdv,

M2 =

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(0, v)

∂t
G2(v, s)G3(s, τ)g (τ) dτdsdv

M3 = |λ2|
∫ 1

0

∫ 1

0

∫ 1

0

G1(1, v)G2(v, s)G3(s, τ)g (τ) dτdsdv

+

∫ 1

0

∫ 1

0

G1(1, s)G3(s, τ)g (τ) dτds

M = max {M1,M2,M3}

M4 =

∫ 1

0

∫ 1

0

∫ 1

0

G1(
1

2
, v)G2(v, s)G3(s, τ)g (τ) dτdsdv

M5 = max
t∈[0,1]

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(t, v)

∂t
G2(v, s)G3(s, τ)g (τ) dτdsdv.

Now, since

− u(6) + au(4) + bu′′ + cu

=

(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ2

)(
− d2

dt2
+ λ3

)
u

=

(
− d2

dt2
+ λ2

)(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ3

)
u

= h(t),

(9)

the solution of boundary value problem (4) can be ex-
pressed by

u(t) =

∫ 1

0

∫ 1

0

∫ 1

0

G1(t, v)G2(v, s)G3(s, τ)h(τ)dτdsdv,

t ∈ [0, 1].

(10)

Thus, for every given h ∈ Y, the boundary value
problem (4) has a unique solution u ∈ C6[0, 1] which
is given by (10).
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We now define a mapping T : C[0, 1] → C[0, 1] by

(Th)(t) =

∫ 1

0

∫ 1

0

∫ 1

0

G1(t, v)G2(v, s)G3(s, τ),

h(τ)dτdsdv t ∈ [0, 1].

(11)

Throughout this article we shall denote Th = u the
solution of the linear boundary value problem (4).

Let us define the cone K ⊂ E by

K =
{
u ∈ E : u(t) ≥ 0, u′′(t) ≤ 0, u(4)(t) ≥ 0,

u(0) = u′(1) = u′′(0) = u(3)(1) = u(4)(0)

= u(5)(1) = 0
}
.

Lemma 2. T : K → K is linear and completely con-
tinuous.

Proof. It is easy to check the operator T is completely
continuous, so we omit it. Next we will show that
T (K) ⊂ K. Assume that h ∈ Y+ and u = Th
is the solution the boundary value problem (4). It is
clear that the operator T maps Y+ into Y+. Now for
all ∀h ∈ Y+, u = Th ∈ Y+, u(0) = u′(1) = u′′(0) =
u(3)(1) = u(4)(0) = u(5)(1) = 0. Using (9) it is easy
to see that

−u′′ + λiu =

∫ 1

0

∫ 1

0

Gj(t, v)Gk(v, τ)h(τ)dτdv,

(12)
t ∈ [0, 1] and

u(4) − (λi +λj)u
′′ +λiλju =

∫ 1

0

Gk(t, v)h(v)dv,

(13)
t ∈ [0, 1], where i, j, k = 1, 2, 3 and i ̸= j ̸= k.

The equality (12) with the assumption λ2 ≤ 0 im-
plies that u′′ ≤ 0. Similarly, the equality (13) with the
assumptions λ2 + λ3 < 0 and λ2λ3 ≤ 0 implies that
u(4) ≥ 0.

Now, we define the nonnegative continuous con-
cave functional α, the nonnegative continuous convex
functional γ, φ and the nonnegative continuous func-
tional ψ on the cone K by

γ (u) = max
t∈[0,1]

|u′′(t)| ,

φ (u) = max
t∈[0,1]

|u(t)| ,

ψ (u) = max
t∈[0,1]

|u′(t)| ,

α (u) = min
t∈[ 12 ,1]

|u(t)| .

Lemma 3. If u ∈ K, then u(1) ≤ u′(0) ≤ |u′′(1)| .

Proof. The proof of u(1) ≤ u′(0) is similar to the
proof of Lemma 1.2. in [11], so we omit it. From
the mean value theorem, there exists ξ ∈ (0, 1) such
that u′′(ξ) = u′(1) − u′(0) = −u′(0). By the fact
that u(4)(t) ≥ 0 on [0, 1] and u(3)(1) = 0 we know
u(3)(t) ≤ 0, on [0, 1] , so u′′(ξ) ≤ u′′(1), i.e. u′(0) ≤
|u′′(1)| . The proof is complete.

Corollary 1. If u ∈ K, then 1
2φ (u) ≤ α (u) ≤

φ (u) ≤ ψ (u) ≤ γ (u) and ∥u∥ = γ (u) .

Proof. From the boundary conditions, we may con-
clude that γ (u) = |u′′(1)| , ψ (u) = u′(0) and
φ (u) = u(1). Thus φ (u) ≤ ψ (u) ≤ γ (u) . At the
same time, combining the definitions of α (u) , φ (u)
and u′′(t) ≤ 0 on [0, 1] (u is concave on [0, 1]), we
have

1

2
φ (u) ≤ α (u) ≤ φ (u) .

3 Main results

We always assume there exist constants a, b, d such
that 0 < a < b ≤ d

2

(
2
π

)2
< d

2 and

(H1) f (t, u, v, w) ≤ d
M for

(t, u, v, w) ∈ [0, 1]× [0, d]× [−d, d]× [−d, 0]

(H2) f (t, u, v, w) > b
M4

for

(t, u, v, w) ∈
[
1

2
, 1

]
× [b, 2b]× [−d, d]× [−d, 0]

(H3) f (t, u, v, w) < d
M5

for

(t, u, v, w) ∈ [0, 1]× [0, a]× [−a, a]× [−d, 0]

Theorem 2. Assume that (H1)− (H3) hold and sup-
pose that g satisfies

0 <

∫ 1

0

Gi(t, τ)g (τ) dτ <∞, i = 1, 2, 3.

Then the boundary value problem (3) has at least three
positive solutions u1, u2 and u3 satisfying

maxt∈[0,1] |u′′i (t)| ≤ d for i = 1, 2, 3,
mint∈[ 12 ,1]

|u1(t)| > b,

maxt∈[0,1] |u′2(t)| > a, mint∈[ 12 ,1]
|u2(t)| < b,

and
maxt∈[0,1] |u′3(t)| < a.

Proof. If u ∈ K (γ, d), then α (u) ≤ ψ (u) and
∥u∥ ≤ Mγ (u) are satisfied because of Corollary
5. Next, we will check that conditions in Theorem
1. are satisfied, respectively. If u ∈ K (γ, d) then
γ (u) = maxt∈[0,1] |u′′(t)| ≤ d, i.e. −d ≤ u′′(t) ≤ 0.
From Lemma 4, and the definitions of φ,ψ and γ, we
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know 0 ≤ u(t) ≤ d and −d ≤ u′(t) ≤ d. Therefore,
we can apply condition (H1) holds. On the other hand,

φ (Tu) = max
t∈[0,1]

|(Tu)(t)|

= max
t∈[0,1]

∣∣∣∣∣
∫ 1

0

∫ 1

0

∫ 1

0

G1(t, v)G2(v, s)G3(s, τ)

f(τ, u (τ) , u′ (τ) , u′′ (τ))dτdsdv|

=

∫ 1

0

∫ 1

0

∫ 1

0

G1(1, v)G2(v, s)G3(s, τ)f(τ, u (τ) ,

u′ (τ) , u′′ (τ))dτdsdv

≤=
d

M

∫ 1

0

∫ 1

0

∫ 1

0

G1(1, v)G2(v, s)G3(s, τ)

g (τ) dτdsdv ≤ d,

and Tu is concave on [0, 1] . Indeed, it is easy to obtain

(Tu)′′(t) = λ2 (Tu) (t)−
∫ 1

0

∫ 1

0

G1(t, s)G3(s, τ)

f(τ, u (τ) , u′ (τ) , u′′ (τ))dτds ≤ 0

because λ2 ≤ 0 and (Tu) (t) ≥ 0. So, it is easy to see
that

ψ (Tu) = max
t∈[0,1]

|(Tu)′(t)|

= max {(Tu)′(0), (Tu)′(1)} = (Tu)′(0)

=

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(0, v)

∂t
G2(v, s)G3(s, τ)

f(τ, u (τ) , u′ (τ) , u′′ (τ))dτdsdv

≤ d

M

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(0, v)

∂t
G2(v, s)G3(s, τ)

g (τ) dτdsdv ≤ d.

Finally, we obtain

γ(u) = max
t∈[0,1]

|(Tu)′′(t)| = max
t∈[0,1]

|λ2 (Tu) (t)

−
∫ 1

0

∫ 1

0

G1(t, s)G3(s, τ)f(τ, u (τ) , u
′ (τ) ,

u′′ (τ))dτds|
= |(Tu)′′(1)| = |λ2| (Tu) (1)

+

∫ 1

0

∫ 1

0

G1(1, s)G3(s, τ)f(τ, u (τ) , u
′ (τ) ,

u′′ (τ))dτds

≤ d

M

(
|λ2|

∫ 1

0

∫ 1

0

∫ 1

0

G1(1, v)G2(v, s)

G3(s, τ)g (τ) dτdsdv

+

∫ 1

0

∫ 1

0

G1(1, s)G3(s, τ)g(τ)dτds ) ≤ d.

That is T : K (γ, d) → K (γ, d).

Next, we examine the condition (A1) . First, we
choose u(t) = 2b sin

(
π
2 t
)
∈ K. Then u′(t) = 2b

(
π
2

)
cos
(
π
2 t
)

and u′′ (t) = −2b
(
π
2

)2
sin
(
π
2 t
)
. So, it is

not difficult to check that

φ (u) = max
t∈[0,1]

|u(t)| ≤ 2b,

and

α (u) = min
t∈[ 12 ,1]

|u(t)| = 2b sin
(π
4

)
=

√
2b > b.

It is easy to see that u(t) ∈ K (γ, φ, α, b, 2b, d) =
{u ∈ K : b ≤ α (u) , φ (u) ≤ 2b, γ (u) ≤ d} ,because

γ (u) = max
t∈[0,1]

|u′′(t)| = 2b
(π
2

)2
≤ d.

So, we obtain that {u ∈ K(γ, φ, α, b, 2b, d) : α(u) >
b} ̸= ∅. Thus, if u ∈ K (γ, φ, α, b, 2b, d) , then b ≤
u(t) ≤ 2b, |u′(t)| ≤ d and |u′′ (t)| ≤ d for 1

2 ≤ t ≤ 1.
If u ∈ K (γ, φ, α, b, 2b, d) , then α (Tu) = Tu( 12 ) by
the fact that (Tu)′(t) ≥ 0 for t ∈ [0, 1] . Hence by
(H2) , we have

α (Tu) =

∫ 1

0

∫ 1

0

∫ 1

0

G1

(
1

2
, v

)
G2(v, s)G3(s, τ)

f(τ, u (τ) , u′ (τ) , u′′ (τ))dτdsdv >

>
b

M4

∫ 1

0

∫ 1

0

∫ 1

0

G1

(
1

2
, v

)
G2(v, s)G3(s, τ)

g (τ) dτdsdv = b.

So, assumption (A1) of Theorem 1 holds.
Using Corollary 8. and b ≤ d

2

(
2
π

)2
< d

2 , for u ∈
K (γ, α, b, d) , φ (Tu) > 2b, we have

α (Tu) ≥ 1

2
φ (Tu) > b.

Thus, assumption (A2) of Theorem 1 holds.
Finally, we check that (A3) of Theorem 1 also

holds. If u(t) ≡ 0, then u′ (t) ≡ 0.Obviously, ψ (u) =
maxt∈[0,1] |u′(t)| = 0 < a, thus 0 /∈ L (γ, ψ, a, d) .
If u ∈ L (γ, ψ, a, d) with ψ (u) = a, then, γ (u) =
maxt∈[0,1] |u′′(t)| ≤ d we obtain −d ≤ −u′′ (t) ≤ 0.
Moreover, by using Corollary 5 φ (u) ≤ ψ (u) , we
have 0 ≤ u (t) ≤ a.

By using (H3) , we have

ψ (Tu) = max
t∈[0,1]

|(Tu)′(t)|

= max
t∈[0,1]

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(t, v)

∂t
G2(v, s)G3(s, τ)

f(τ, u (τ) , u′ (τ) , u′′ (τ))dτdsdv

<
a

M5
max
t∈[0,1]

∫ 1

0

∫ 1

0

∫ 1

0

∂G1(t, v)

∂t
G2(v, s)G3(s, τ)

g (τ) dτdsdv = a.

Thus, (A3) of Theorem 1 is satisfied. Therefore,
Theorem 1 implies that boundary value problem (3)
has at least three positive solutions u1, u2 and u3.
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